
FRESH: Towards Efficient Graph Queries in an
Outsourced Graph

Kai Huang¶,†,§, Yunqi Li†,§, Qingqing Ye‡, Yao Tian†, Xi Zhao†, Yue Cui†, Haibo Hu‡, Xiaofang Zhou†
¶ Faculty of Information Technology, Macau University of Science and Technology, Macau SAR

† The Hong Kong University of Science and Technology, Hong Kong SAR
‡ The Hong Kong Polytechnic University, Hong Kong SAR

huangkai@must.edu.mo, ylilo@connect.ust.hk, qqing.ye|haibo.hu@polyu.edu.hk, ytianbc|xzhaoca|ycuias|zxf@ust.hk

Abstract—The constantly increasing scale of graphs leads to
higher costs in terms of data storage and computation. Conse-
quently, there is a growing trend of outsourcing and analyzing
graphs in clouds. As there is a concern that cloud servers may
extract sensitive information from these graphs, the graphs being
outsourced must be pre-anonymized, leading to increased space
consumption and degraded graph query processing efficiency.
Previous work has attempted to address this issue by outsourcing
a compacted anonymized graph to the cloud. However, the
solution typically focuses on a specific type of query, such as
a subgraph query, and cannot adequately accommodate real-life
scenarios where multiple applications often work concurrently on
the same graph. In this paper, we propose a generic framework
called FRESH to handle various graph queries efficiently within
a single outsourced graph. To reduce the size of the outsourced
graph, we developed a novel graph contraction scheme that trans-
forms a big graph into a compact one while preserving graph
privacy. To showcase the adaptability of classical graph query
algorithms (e.g., subgraph query, triangle counting, and shortest
distance query), we demonstrate their successful execution on the
same compact graph created through our contraction scheme. We
further extend our framework by incorporating optimizations
that significantly improve query processing efficiency. Extensive
experimental results demonstrate the superiority of FRESH over
traditional techniques.

Index Terms—Graph Queries, Outsourced Graph, Efficiency

I. INTRODUCTION

Graphs have become increasingly popular for modeling

complex and interconnected data and have been widely applied

in social networks, bioinformatics, and computer vision. How-

ever, with the increasing size of graphs, storing and processing

the graph data can impose expensive upfront infrastructure

costs on users, such as start-up companies, which hinders the

acquisition of valuable information from graphs. To address

this problem, many cloud service providers (e.g., Amazon, Al-

ibaba, and Microsoft Azure) offer graph outsourcing services

by storing user-owned graphs and performing query processing

tasks on their behalf. However, the cloud server may not be

fully trusted, and is generally described as “honest but curious”

or “semi-honest” [2]–[4]. On the one hand, the cloud server

behaves honestly by adhering to the designated protocol spec-

ification (e.g., HIPAA compliance1) and correctly computing

§These authors contributed equally to this work.
1https://aws.amazon.com/compliance/hipaa-compliance/

queries. However, on the other hand, the server may be curious

about the privacy of the graph data. A main form of privacy

disclosure is identity (also known as structural information)

disclosure, which compromises the location of a target node

in the graph and can be caused by various structural attacks,

such as degree attacks, hub-fingerprint attacks, 1-neighbor-

graph attacks, and subgraph attacks [13]–[15]. To defend

against these attacks, numerous privacy-preserving methods

[5], [6], [9] have been proposed to enforce symmetry in

an outsourced graph by introducing noise edges and nodes.

This reduces the probability of a target being identified by

attackers to at most 1/k. The k-automorphism model [5], in

particular, is such a method that transforms a graph G into a

k-automorphic graph Gk, where each subgraph (resp. vertex)

has at least (k−1) other symmetric subgraphs (resp. vertices).

Put another way, the attacker cannot differentiate between a

vertex and the other (k−1) symmetric vertices. It is known that

the k-automorphism strategy can defend against any known

structure-based attack [4], [5].

Example 1: Consider the graph G shown in Figure 1(a),

where each vertex represents an entity and its label is displayed

in Figure 1(c). If an adversary knows that an entity has 6

neighbors, they can immediately deduce that vertex v6 in G
is the target entity (i.e., degree attack). Additionally, if the

adversary has prior knowledge of the relationships of an entity

u1 and its neighbors, for example, Q in Figure 1(b), they can

locate u1 with a subgraph attack. Specifically, by checking

subgraph isomorphism (as defined in Definition 1) from Q to

G, the adversary can identify the matched subgraph of Q in G,

i.e., 〈v5, v25, v6, v24, v9〉, where v5, v25, v6, v24, and v9 match

with u2, u1, u3, u4, and u5, respectively. Therefore, they can

locate u1 in G, i.e., v25.

The k-automorphism model can be utilized to prevent such

structure attacks by introducing noise edges to construct a k-

automorphic graph Gk. For instance, Gk in Figure 2(a) is a k-

automorphic graph of G, where k = 2. In this figure, the noise

edges (e.g., edge (v4, v23)) are displayed by black dashed lines.

Notably, each vertex in Block 0 (as seen in the dashed box)

has a symmetric vertex in Block 1, and their labels are now the

same, i.e., the union of their labels, as shown in the Alignment

Vertex Table (AVT) in Figure 2(b). v1 in Block 0 (i.e., B0)

4545

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00346

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
03

46

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

v1

v2

v3

v4

v23

v24

v25

v5

v6

v7

v8 v9

v10

v11

v12

v26

v27

v28

v13

v14

v15

v16

v17
v18 v19

v20v21

v22

u1

u2

u3 u4

u5

����� ���	�
 � �
 � ���	�
 � �
 �

�� ��� ���� ���� ���� ���� ���

�� ��� ��� ��� ��� ����
���� ���� ���

�����

�� �	� �
� ���� ��
� ����
���� ���� ��	� ��

�����

�� ��� ��� ���� ���� ��	 ��

��� �����	�
 ���� ���
� � ��� ����� ���
� � ��� ����
� �� ��������

Fig. 1: A sample data graph and query graph

�� �� ����� �� �� ����	

�� ��� �� � �� �� ��� �� � ��

�� ��� �� � �� �� ��� �� � ��

�� ��	 �� ��� ��� �� � ��

�� ��� �� ��� ��� ��

�	 ��� �� ��� ��
 ��

�
 ��� �� ��� ��� ��

�� ��� �� � �� ��	 ��� ��

��� �����	
	����
������ �� ��� �����
��� ������ ����� �����

v1

v2

v3

v4

v23

v24

v25

v5

v6

v7

v8 v9

v10

v11

v12

v26

v27

v28

v13

v14

v15

v16

v17
v18 v19

v20v21

v22
Block 0 Block 1

Fig. 2: k-automorphic graph and alignment vertex table

is symmetric to v16 in Block 1 (i.e., B1), and their label is

now {�1, �2} (see the first row in Figure 2(b)). Consequently,

the probability that the adversary locates v6 with a degree

attack is at most 1
2 , as there is at least one vertex (i.e., v17,

the symmetric vertex of v6) that has the same degree as v6.

Similarly, the probability that the adversary locates u1 in G
with the same subgraph attack is at most 1

2 , as there are at

least two matched subgraphs of Q on G.

However, outsourcing a k-automorphic graph to a cloud and

processing graph queries on it has some significant limitations.

Firstly, while enforcing symmetry in an outsourced graph can

defend against structural attacks, it unavoidably enlarges the

size of a graph and increases space consumption, which fur-

ther degrades query processing efficiency. Secondly, existing

techniques (e.g., [2], [4]) that outsource only a fraction of a

graph into the cloud for reducing storage space target specific

type of queries (e.g., subgraph query), and cannot adequately

accommodate real-life scenario where multiple applications

often run on the same graph concurrently 2.

To address these limitations, we propose a generic frame-

work called FRESH (eFficient gRaph queriEs in outSourced

grapHs) to handle various graph queries efficiently on the same

outsourced graph. To reduce the size of the outsourced graph,

we develop a novel graph contraction scheme to transform

a big graph into a compact one while preserving the graph

2As reported in a study on GDB benchmarks [17], an average of 10 classes
of queries are executed concurrently on a single graph.

privacy. In particular, we first adopt the k-automorphism model

to anonymize the original graph for privacy concerns. As this

anonymization will inevitably enlarge the size of a graph,

we further take advantage of the symmetric property of a

k-automorphic graph and graph contraction to generate a

compact graph for outsourcing to a cloud. Once the compact

graph is outsourced to the cloud, as a proof of concept, we

adapt three classical graph query algorithms (i.e., subgraph

query, triangle counting, and the shortest distance query) to the

outsourced graph. We selected these query classes based on

the dichotomies [18]: (1) label-based (subgraph query) vs. non-

label-based (triangle counting, shortest distance query); (2) lo-

cal (subgraph query, triangle counting) vs. non-local (shortest

distance query). To efficiently process such queries, we design

novel optimizations to further boost query efficiency. Extensive

experimental results demonstrate the superiority of FRESH to

traditional techniques.

To summarize, we make the following contributions: (i)

we propose a generic framework called FRESH to handle

various graph queries efficiently in the same outsourced graph.

In the framework, a novel and lossless graph contraction

scheme is designed to reduce the size of outsourced graphs

while preserving private structure information. (ii) we adapt

three classical graph query algorithms (i.e., subgraph query,

triangle counting, and the shortest distance query) to the

compacted graphs to show that existing graph queries can be

easily adapted to our contraction scheme. (iii) we extend our

framework by incorporating optimization strategies to boost

query efficiency without compromising graph privacy. (iv)

we conduct extensive experimental evaluations to show the

superiority of our methods over existing solutions.

The rest of this paper is organized as follows. Section II

discusses related work. Section III presents the preliminaries.

In Section IV, we introduce our FRESH framework and the

novel contraction scheme. Three adapted graph queries are

presented in Section V. We present post-processing in Section

VI, optimizations in Section VII, and experimental results in

Section VIII. We conclude the work in Section IX. Formal

proofs of lemmas and theorems are in [1].

4546

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Privacy-preserving graph data publication and anonymiza-
tion. A variety of structural privacy-preserving mechanisms

such as [5], [6], [9] have been developed to defend against

various structural attacks [13]–[15] such as degree attacks,

hub fingerprint attacks and subgraph attacks, by enforcing

symmetry in an outsourced graph. In particular, given a

graph G, k-automorphism model developed by Zou et al. [5]

transforms G into a k-automorphic graph Gk by introducing

some noise edges and vertices, where each vertex has at least

(k−1) other symmetric vertices. Hence, there are no structural

differences between any vertex and its (k − 1) symmetric

vertices. Recently, data privacy and security are becoming

more and more important [10], [53], [60]–[63]. Classical

anonymization methods such as k-anonymity [10], �-diversity

[11], t-closeness [12] and differential privacy [2], [44]–[47],

[50]–[54] can also be adapted for protecting sensitive labels

(e.g., salary, social security number, and medical history of

a user) of graphs. Compared to this line of research that

only focuses on privacy-preserving graph data publication and

anonymization, this paper is mainly on efficient graph queries

in outsourced graphs.

Graph queries and privacy-preserving graph queries in
a cloud. There has been a host of work on graph queries

such as the subgraph query [19]–[25], [40], [41], [48], [49],

[56], [57], triangle counting [26], [27] and the shortest dis-

tance/path query [30]–[34], [58], [59]. Recent efforts on

privacy-preserving methods or frameworks have been made

for these graph queries (e.g., [35]–[39]). In particular, [35]

considers secure shortest path queries by anonymizing edge

weights in the original graph while preserving shortest paths.

[36] discusses privacy-preserving shortest distance queries in a

cloud. [37] presents a novel technique for answering subgraph

queries over encrypted graphs for a graph database consisting

of a set of small graphs. [4], [42] present privacy-preserving

subgraph matching methods on a large graph. Unfortunately,

they support only one query type. In practice, multiple ap-

plications often run on the same graph simultaneously [17],

[18].

Graph contraction-related methods. Graph compression and

summarization have been extensively studied using various

techniques. Graph compression techniques [55], [64] aim to

create query-specific equivalence relations by merging equiv-

alent vertices into a single vertex. On the other hand, graph

summarization [65], [66] generates an abstraction or summary

of the original graph by aggregating nodes or subgraphs to

enhance query efficiency. However, this summarization may

result in some loss of information about the original graph.

In contrast, graph contraction [18] reduces a large graph

into smaller ones by contracting subgraphs, which is lossless

and can retrieve precise answers for queries. In this paper,

we propose a novel privacy-preserving graph contraction that

ensures the resulting compact graph can withstand any struc-

tural attacks. This contraction scheme is distinct from existing

indexing techniques [33], [71] such as indexing for subgraph

TABLE I: List of key notations.

Notation Description
G (or g), Gk , Gk

small, Gout a graph, a k-automorphic graph,

a small fraction of Gk , an outsourced graph

RQS a set of answer to multiple query class QS
V (G), E(G), lG(·) vertex set, edge set and label function of G

w(u, v) weight of the edge (u, v)

Q a query class

QS multiple query classes, i.e., Q ∈ QS
Q a query i.e., Q ∈ Q

cl, cu minimum or maximum size of a supernode

p, P a path, a set of paths

C, C(u) candidate set for vertices in Q and u ∈ Q

π matching order for subgraph isomorphism

M a set of embeddings of query Q in graph G

〈fA, fC ,S, fD〉 <mapping function, contraction function,

synopses, decontraction function>

f ′
C reverse function of fC

VB0
, VN0

vertices in the first block of Gk ,

one-hop neighbors of vertices in VB0

CBV supernode consisting of vertices in VN0

VH , EH supernodes and superedges of subgraph H

d(u, v) the shortest distance between u and v

queries [67], [68] and the shortest distance queries [69], [70],

each of which is designed for a particular query class.

III. PRELIMINARIES

Table I lists key notations and acronyms used in this paper.

A. Key Concepts

Graphs and (Sub)graph Isomorphism. We consider an

undirected graph G = (V,E,L) where V is the vertex set,

E ⊆ V × V is the edge set and L is a label function such

that L(v) is the label of v ∈ V . Each edge e ∈ E between

two vertices u and v is denoted by (u, v) and associated with

a positive weight w(u, v).
Definition 1 (Subgraph Isomorphism): Given graphs g and

G, a subgraph isomorphism from g to G is an injection

function f : V (g) → V (G) such that 1) ∀v ∈ V (g), lg(v) =
lG(f(v)) and 2) ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(G) and

l(u, v) = lG(f(u), f(v)) where lg and lG are the labeling

functions of g and G, respectively.

We say g is subgraph isomorphic to G (denoted by g ⊆ G)

if there exists at least one subgraph isomorphism from g to G.

We also say that g is isomorphic to G if g ⊆ G and G ⊆ g.

Graph Automorphism. A graph automorphism of a graph

is a form of symmetry in which the graph is mapped onto itself

while preserving the edge–vertex connectivity. Formally,

Definition 2 (Graph Automorphism [5]): An automorphism

of a graph G is an automorphic function f of the vertex set

V (G), such that for any edge e = (u, v), f(e) = (f(u), f(v))
is also an edge in G and lG(u) (resp. lG(v)) = lG(f(u)) (resp.

lG(f(v))) where lG is the labeling function of G.

Figure 3 illustrates six automorphisms, such as (1, 2, 3, 4) in

(a) and (2, 1, 3, 4) in (b), of a star graph with a size of 4, where

the center node is connected to 3 neighbors. Let’s consider

Figure 3(a) and (b). In this case, there exists an automorphic

function f such that f(1) = 2, f(4) = 4, and f(e = (1, 4)) =

4547

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

��� �������	�

�
� �������	���� �������	�

��� �������	�
 ��� �������	�

��� �������	�

�
�

�

� ��

�

�

�

��

�
� �

�

�

�

�

�

� �

�� �
������

��	��	

Fig. 3: Graph Automorphism

(2, 4). A graph G is called k-automorphic graph if there exist

k graph automorphisms in G.

Example 2: Figure 2(a) and Figure 2(b) depict Gk, k-

automorphic graph (k = 2) of G (see Figure 1), and Alignment

Vertex Table (AVT, i.e., symmetric relations of vertices in Gk),

respectively. Observe that graph automorphism brings several

noise edges (dashed lines in Gk) to form an automorphic

structure. Also, for a group of k symmetric vertices in AVT,

they hold the same label set which is the combination of all

their labels in original data graph G.

It is known that k-automorphic graph can defend against

any structure-based attack [5] such as degree attack, hub-

fingerprint attack, 1-neighbor-graph attack and subgraph at-

tack. Given a graph G, K-MATCH algorithm [5] can transform

it into a k-automorphic graph.

Graph Queries. A graph query Q is a computable function

from a graph G to another object such as a real value, graph,

and relation. As a proof of concept, we consider three query

classes: subgraph query, triangle counting and the shortest

distance query.

• Subgraph (Matching) Query (SubA): Given a data graph

G and a query graph g, a subgraph query Q aims to find

a set of subgraphs in G that are isomorphic to g. Formally,

Q(g,G) = {gi} where gi is a subgraph of G and isomorphic

to g.

• The Shortest Distance Query (Dist): Given a data graph

G and a vertex pair 〈o, d〉, the shortest distance (also
known as point-to-point shortest distance) query finds the

shortest distance between o and d, i.e., Q(o, d,G) =
argminp∈P

∑
(u,v)∈p w(u, v) where P is the set of all

possible paths between o and d.

• Triangle Counting (TriC): Given a data graph G, a triangle

counting query Q is to find the number of triangles in

G. That is, Q(G) = |TriC(G)| where |TriC(G)| is the

number of triangles in G.

The shortest distance query between two vertices u and v is

considered a non-local query because there is no fixed distance

d independent of the input graph such that d(u, v) < d. On the

other hand, both the subgraph query and triangle counting are

classified as local queries, meaning they exhibit locality. This

is because a single subgraph match or triangle is confined to

a specific local area within the input graph G.

B. Problem Statement

Observe that multiple real-life query classes (i.e., applica-

tions) QS often run on the same graph G at the same time

[17]. A query class Q ∈ QS contains a set of graph queries

of the same query type (e.g., subgraph query) and each graph

query Q ∈ Q is a computable function discussed above.

Due to the high cost of graph storage and computation, G
can be outsourced and analyzed in a cloud, which may be

curious to infer the sensitive information of G. Therefore, it is

an important problem to process graph queries in outsourced

graphs without disclosing graph privacy. Given a graph G and

multiple query classes QS , the task of graph queries in an

outsourced graph involves two main subtasks,

• graph outsourcing: transforming G into a graph Gout

(G ⊆ Gout) such that Gout can defend against any

structure-based attack, and outsourcing Gout to a cloud;

• query processing: processing multiple query classes QS
in the same outsourced graph Gout and returning the

results to the client.

Remark. Note that G is a subgraph of the outsourced graph

Gout such that the exact query results on Gout can be covered

by that on G. In addition, graph outsourcing is performed

on the client side while query processing runs on a cloud.

When the cloud returns the query results to the client side, only

lightweight filtering computations are needed. In particular, the

client only needs to filter the results that contain the parts (e.g.,
edges) not in G.

C. Baselines

We propose three baseline methods for addressing this

problem. The first baseline, called AUT, involves using the

K-MATCH algorithm [5] to transform a given graph G into

a k-automorphic graph Gk. The transformed graph Gk is

then outsourced to a cloud for query processing. The second

baseline, named SUC, also utilizes the K-MATCH algorithm

to transform graph G into Gk. However, it takes a different

approach by following existing work [2], [4] to outsource a

succinct version of Gk. The third baseline, called CAU, applies

the contraction method [18] directly on the k-automorphic

graph Gk. However, as demonstrated in Section VIII, these

baseline methods have their shortcomings. They suffer from

high storage costs and low query performance.

IV. FRESH: A NOVEL FRAMEWORK

In this section, we begin by identifying the design chal-

lenges associated with the problem. Subsequently, we intro-

duce our FRESH framework to address these challenges.

A. Design Challenges

The problem of graph queries in outsourced graphs intro-

duces nontrivial challenges. First, outsourcing a k-automorphic

graph to a cloud unavoidably enlarges the size of a graph and

increases space consumption, which further degrades query

processing efficiency. Second, directly applying the existing

4548

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

contraction scheme [18] to reduce the size of a k-automorphic

graph does not consider the symmetric property of the graph,

potentially resulting in higher space requirements and lower

computational efficiency (refer to Section VIII). Additionally,

alternative graph compression and summarization techniques

may cause information loss regarding the original graph (refer

to Section II).

B. Overview of FRESH

To address these challenges, we propose the FRESH frame-

work to efficiently process multiple classes of graph queries

in an outsourced graph, which can preserve the privacy of

the graph. The main idea of FRESH is to adopt the k-

automorphism model to anonymize the original graph for

privacy concerns, and take advantage of the symmetric prop-

erty of the k-automorphic graph and graph contraction to

generate a compact graph, which supports classical graph

query algorithms and facilitates query processing.

FRESH is outlined in Algorithm 1. Formally, given the

original graph G and query classes QS , FRESH aims to find

a set of results, RQS , for all queries in QS . Specifically, it

first initializes RQS with an empty set φ (Line 1, Algorithm

1). Then, it adopts the following two steps to derive the

privacy-preserving graph contraction scheme 〈fA, fC ,S, fD〉
and compute the contracted graph Gout: (1) pre-processing the

original graph to generate fC , fA, fD (PREPROCESSGRAPH,

Line 2); and (2) contracting graph to derive S and Gout

(CONTRACTGRAPH, Line 3). In particular, fA is a mapping

function, which maps a graph G to a small fraction of k-

automorphic graph Gk (denoted by Gk
small, Definition 3); fC

is a contraction function, which takes Gk
small as input and pro-

duces a compact graph Gout by collapsing certain subgraphs

H into supernodes vH ; S is synopses, which annotates each

supernode vH of Gout with a synopsis S(vH) ∈ S; fD is a

decontraction function, which restores each supernode vH in

Gout to its original subgraph H . Once the cloud side receives

a query class Q ∈ QS , it adopts the ANSWERQUERIES

algorithm (see Section V) to process queries on Gout with

the help of S, fC , fD, and fA (Line 5). Finally, the processed

results are returned to the client side where these results are

further refined by PROCESSRESULT Procedure (Line 6) based

on the original graph G and the graph contraction scheme. In

a nutshell, FRESH offers several advantages:

(i) Limited memory consumption. By taking advantage of

the symmetric property of the k-automorphic graph, FRESH
presents a privacy-preserving graph contraction to avoid exces-

sive memory consumption for storing an entire enlarged graph

on which query processing is performed. Compared to the

existing graph contraction [18], the privacy-preserving graph

contraction introduces a new special supernode called CBV
(see Section IV-C) and the mapping function fA.

(ii) Effective query processing. FRESH adapts three clas-

sical graph query algorithms (i.e., subgraph query, triangle

counting, and the shortest distance query) to the contracted

graph, and offers efficient query performance.

(iii) Guaranteed query results. Both the graph contraction

and query processing stages in FRESH are lossless, meaning

that the integrity of the query results is preserved. Additionally,

post-processing techniques can be applied to prune false

positive results, further enhancing the accuracy of the query

results. Consequently, FRESH guarantees exact query results.

In what follows, we present the details of the privacy-

preserving graph contraction scheme including preprocessing

(i.e., PREPROCESSGRAPH) in Section IV-C and graph con-

traction (i.e., CONTRACTGRAPH) in Section IV-D. In Section

V, we discuss how classical graph queries are adapted to

the outsourced graph (i.e., ANSWERQUERIES). The post-

processing algorithm (i.e., PROCESSRESULT) is provided in

Section VI.

Algorithm 1 FRESH

Input: Original graph G, multiple query classes QS.
Output: A set of results RQS of queries.
1: RQS ← φ
2: fA, Gk

small, fC , fD ← PREPROCESSGRAPH(G)
3: Gout,S ← CONTRACTGRAPH(Gk

small, fC)
4: for each Q ∈ QS do
5: RQ ← ANSWERQUERIES(Gout, Q, fA, fC , fD , S)
6: RQ

G ← PROCESSRESULT (G, RQ, fA)

7: RQS ← RQS ∪ RQ
G

8: return RQS

C. Pre-Processing on Original Graph

FRESH processes the original graph G to derive a mapping

function fA, contraction function fC , decontraction function

fD and a small fraction of Gk, i.e., Gk
small below.

Definition 3: Given k-automorphic graph Gk, vertices in the

first block of Gk is denoted by VB0
. The one-hop neighbors

of vertices in VB0 are denoted by VN0 . Gk
small is a subgraph

of Gk and Gk
small = (Vsmall, Esmall), where Vsmall = VB0 ∪

VN0
, Esmall ⊆ Vsmall × Vsmall.

Computing fA and Gk
small. Given a graph G, it first trans-

forms G into a k-automorphic graph Gk by the K-MATCH

algorithm. Then, it constructs Gk
small by selecting VB0 , VN0

and edges between any two vertices in VB0 ∪ VN0. Finally,

for each vertex v in Gk
small, fA stores its block id (i.e., part,

Figure 5(c)), symmetric vertices (i.e., v.sym), and the union

set (denoted by label, Figure 5(c)) of its label and labels

of symmetric vertices. When constructing the k-automorphic

graph, it is possible to introduce some noise edges, which

further introduce false shortest distances. We address this

problem by assigning a noise edge (u, v) with the weight

w(u, v) = mint∈N(u,v)(w(u, t) +w(t, v)) + ε where N(u, v)
is the common neighbors3 of u and v, and ε > 0 is drawn

from a Laplace distribution.

Example 3: Consider the noisy edge (u, v) in Figure 4.

The common neighbors of u and v include t1 and t2. Since

w(u, t1)+w(t1, v) = 1.3+1.5 = 2.8 and w(u, t2)+w(t2, v) =
1.4 + 1.1 = 2.5, the noise edge (u, v) is assigned a weight

w(u, v) = mint∈N(u,v)(w(u, t)+w(t, v))+ ε = (1.4+1.1)+

3If N(u, v) = ∅, w(u, v) = minp∈P (u,v)dis(p) + ε where P (u, v) is
all paths between u and v, and dis(p) is the distance of a path p.

4549

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

�� �

��

��

������

� ��� � ��� � ���

������

��� ��	

�

Fig. 4: Noise Edge (u, v)

0.1 = 2.6 where ε = 0.1 is Laplace noise. Note that despite

the existence of the noise edge, the shortest distance between

s and d is preserved as 4.8.

Computing fC and fD. Given Gk
small, FRESH initially con-

tracts all nodes in VN0
into a single supernode. We refer

to this supernode, which consists of all nodes in VN0 , as

CBV . Next, it proceeds to contract [cl, cu] vertices in VB0

into supernodes, following the order of clique, star, and path

contractions. Specifically, (1) for cliques, it iteratively selects

an uncontracted node that is connected to all previously

selected nodes until the clique is fully contracted; (2) for stars,

it first selects a central node and then repeatedly chooses an

uncontracted leaf node connected to the center and discon-

nected from all previously selected leaves; (3) for paths, it

identifies intermediate nodes that have only two neighbors and

the corresponding neighbors (or neighbors of neighbors) that

are disconnected. Finally, the contraction function fC is used

to map each node in Gk
small to a supernode. Furthermore, f ′

C

serves as the reverse function of fC . A decontraction function

fD restores the subgraph (i.e., all edges between nodes in

a supernode) contracted to a supernode and edges between

two nodes located in different supernodes. In particular, for

a supernode vH , fD (vH) restores the edges between the

nodes in f ′
C (vH). For a superedge (vH1 , vH2) , fD (vH1, vH2)

restores the edges between f ′
C (vH1) and f ′

C (vH2) and the

corresponding edge weights.

Example 4: Reconsider Example 5. The decontraction func-

tion fD can restore the subgraph in Figure 5(a) from supern-

odes in Figure 5(b), e.g., fD (vH1) is a star with central node

v2 and leaves v1, v3 and v5; as well as edges from superedges,

e.g., fD (vH1 , vH3) = {(v1, v6)}.

D. Graph Contraction

Contracted Graph Gout. Based on fC , the contracted graph is

represented as Gout = fC(G
k
small) = (VH , EH , f ′

C), where:

• VH is a set of supernodes. Each supernode is mapped

from a subgraph H in Gk
small.

• EH ⊆ VH×VH is a set of superedges. Given two supern-

odes vH1 and vH2 , there is a superedge (vH1 , vH2) ∈ EH

if there exist nodes v1 and v2 such that fH (v1) =
vH1

, fH (v2) = vH2
and (v1, v2) ∈ E;

• f ′
C is a reverse function of fC . f ′

C (vH) =
{(v, L(v)) | fC(v) = vH} where L(v) is labels of v.

Example 5: Consider the graph Gk
small in Figure 5(a),

the contraction function fC contracts Gk
small to the con-

tracted graph Gout in Figure 5(b) such that Gout =
fC(G

k
small) = (VH , EH , f ′

C). Here, the supernode set

VH = {vH1
, vH2

, vH3
, vH4

, vH5
}; the superedge set EH =

{(vH1 , vH2), (vH2 , vH3), (vH3 , vH4), (vH3 , vH5),}; the

reverse function f ′
C(H3) finds the labels for each node in

the subgraph H3, i.e., f ′
C(H3)={(v6, {l4}), (v7, {l2, l3}),

(v8, {l2, l3}), (v9, {l2, l3}), (v10, {l3, l4})}.
Synopses S. Each supernode vH in the contracted graph Gout

carries a synopsis S(vH) ∈ S for each query class Q.

Therefore, there are three synopses S, SSubA, SDist, and

STric. In particular, if

(1) Q = SubA, S = SSubA: the synopsis of vH consists

of the node type (i.e., type, see Figure 5(d)) and the auxiliary

information (i.e., Info, Figure 5(d)).

• vH .type: the type of supernodes consists of path, clique,

star, CBV , and singleton.

• vH .Info: vH .Info = vH .list= 〈v1, v2, ..., vx〉 where

(vi, vi+1) ∈ E and x is the length of the path, if

vH .type= path; vH .Info = vH .vset= 〈v1, v2, ..., vx〉 where

vi is a vertex in vH , and x is the number of vertices in

vH , if vH .type= CBV ; vH .Info = vH .c, i.e., the center

node of a star, if vH .type = star.

(2) Q = Dist, S = SDist: The synopsis SDist of vH is an

extension of SSubA, which includes the auxiliary information

on distance (i.e., vH .dis). For a supernode vH , vH .dis is i.e.,
a triple (v1, v2, dvH

(v1, v2)) for a path between v1 and v2 in

vH . If vH .type = CBV , vH also keeps track of the distances

between vertices v1 ∈ vH and v2 ∈ CBV .

Example 6: Consider the contracted graph Gout in

Figure 5(b). If w(u, v) = 1 for all edges (u, v),
vH1.dis = {(v3, v2, 1), (v1, v2, 1), (v5, v2, 1), (v3, v1, 2),
(v3, v5, 2), (v1, v5, 2)}. vH4.dis = {(v4, v23, 1), (v23, v24, 1),
(v24, v25, 1), (v4, v24, 2), (v4, v25, 3), (v23, v25, 2)}.

(3) Q = Tric, S = STric: The synopsis STric of vH is an

extension of SSubA, which includes the auxiliary information

on triangles (i.e., vH .tc). vH .tc is a set of triangles that cross

at least two different supernodes including vH . If vH .type =
CBV , vH .tc includes triangles in CBV .

Lemma 1: The time complexities of k-automorphic graph

construction and graph contraction are O(
∑

i≤k |E(Bi)|) and

O((|V (Gk)|+ |E(Gk)|)2), respectively, where |E(Bi)| is the

number of vertices in the block Bi of Gk and |V (Gk)| (resp.

|E(Gk)|) is the number of vertices (resp. edges) in Gk.

V. QUERY PROCESSING IN A CLOUD

In this section, we demonstrate how existing graph query

processing algorithms can be easily adapted to outsourced

graphs Gout to facilitate query processing including subgraph

isomorphism, shortest distance, and triangle counting. When

a query Q ∈ Q is received, FRESH first checks whether

the synopsis on a supernode vH contains enough information

to answer Q. If so, FRESH answers the query with vH
without further processing. Otherwise, FRESH decontracts vH
by the decontraction function fD. The synopsis of vH often

4550

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

vH1 vH2

vH3 vH4

vH5

v1

v2

v3

v4

v23

v24

v25

v5

v6

v7

v8 v9

v10

v11

v12

v13

v18

v21

��� ���

���

���

�� � ����� ���� ���� ���� ���

	� � ����� ��� � ���� ��� �

����� ����� ����� �������

��
� �� � � ��� 		 � �
� 	
� 	� �� � �

vertex part
Info

vertex part
Info

v.sym label v.sym label

v1 B0 v16 l1, l2 v10 B0 v18 l3, l4
v2 B0 v14 l1, l3 v11 B0 v22 l1
v3 B0 v15 l2 v23 B0 v26 l1
v4 B0 v12 l4 v24 B0 v27 l3
v5 B0 v13 l2 v25 B0 v28 l3
v6 B0 v17 l4 v12 B1 v4 l4
v7 B0 v19 l2, l3 v13 B1 v5 l2
v8 B0 v20 l2, l3 v18 B1 v10 l2, l3
v9 B0 v21 l2, l3 v21 B1 v9 l2, l3

super node vH vH ’s type Info

vH1 star vH1.c = v2
vH2 CBV vH2.vset = {v12, v13, v18, v21}
vH3 clique

vH4 path vH4.list = 〈v4, v23, v24, v25〉
vH5 singleton

Fig. 5: (a) A small fraction of Gk, Gk
small; (b) outsourced/contracted graph Gout = fC(G

k
small) = (VH , EH , f ′

C); (c) mapping

function fA; and (d) synopses S

Algorithm 2 FRESHSUBA

Input: Outsourced graph Gout, a single query graph Q, fA, fC .
Output: A set of embeddings M of Q in Gout.
1: M ← ∅, tM ← ∅
2: for each u ∈ V (Q) do
3: C(u) ← FilterCandidate(Gout, u)

4: π ← ChooseMatchingOrder(Q, C)
5: SubgraphSearch(Gout, fA, fC , Q, C, π, M, tM)
6: return M

provides sufficient information to either process Q at vH
or bypass vH , which means that synopses and decontracting

superedges without decontracting any topological components

are sufficient for answering queries. This guarantees the high

query efficiency of FRESH.

A. Subgraph Query

The classical algorithms for subgraph queries [22], [23] can

be easily adapted to work with the graph Gout. We present

the adapted algorithm, called FRESHSUBA, in Algorithm 2.

Compared to existing algorithms, FRESHSUBA introduces

two significant modifications. The first modification involves

checking whether a query vertex is matched by a vertex

contained within a supernode in Gout (see FilterCandidate,

Line 3). The second modification is verifying the existence

of an edge in Gout that matches with a query edge (see

SubgraphSearch, Line 5). More details are provided below.

FilterCandidate (Line 3). For a query vertex u in Q and a

supernode vH , the reverse function f ′
C (vH) can help to check

if vH contain the label of u. In addition, the degree of each

vertex in vH can be easily derived without decontracting the

supernode. For example, if vH is a star (i.e., vH .type =

star), the degree of the center node is no less than N − 1
where N is the number of vertices in the star. For a vertex

v in a path, if v is neither source nor target, its degree is

2. If vH is a CBV (i.e., supernode contracted from one-

hop neighbors of vertices in the first block of Gk), we can

derive the degree information based on fA. In particular,

we can derive the vertex set from the synopsis of CBV ,

��
��

��

��

��
�� ��

��

���

���

�����	�
 �������
�� ������	� �������

Fig. 6: Edge between u′ and v′ (u′, v′ ∈ vH)

based on which we can find the symmetric vertices and the

corresponding supernode vH′ for vertices in CBV . As such,

we derive the degree information from vH′ . Observe that no

supernodes or superedges are decontracted.

ChooseMatchingOrder (Line 4). FRESH adopts LDF (i.e., La-

bel and Degree Filtering [22], [23]) to rank query vertices (i.e.,
π) so that the search space for query matching is relatively

small. No adaptation is needed.

SubgraphSearch (Line 5). Since this step involves greedily

matching each edge in query Q, it is crucial to ensure that we

can easily verify the existence of an edge (u′, v′) that matches

edge (u, v) ∈ Q. When u′ and v′ are in the same supernode

vH , (1) vH is a star (e.g., Figure 6(a)), (u′, v′) exists if u′ or

v′ is the center vertex in vH ; (2) (u′, v′) always exists if vH is

a clique (e.g., Figure 6(b)); (3) if vH is a path, (u′, v′) exists

if u′ and v′ are neighbours (e.g., Figure 6(c)); or (4) if vH is

a CBV and u′′ (resp. v′′)) is the symmeric node of u′ (resp.

v′) in first block, (u′, v′) exists if (u′′, v′′) exists (see Figure

6(d)). When u′ and v′ are not in the same supernode, it suffices

to check if (u′, v′) exists by decontracting the superedges

between the supernode containing u′ and that containing v′

without decontracting supernodes.

Example 7: Consider the subgraph query of Q (see Figure

1(b)) on Gout (Figure 5(b)). By using f ′
C , we know that

u2 has candidates vH1 and vH2; u3 has candidate vH3; u5

has candidate vH3 and vH2; u1 and u4 both have candidate

vH4. Let the query order be u4, u1, u3, u2, u5. When

SubgraphSearch matches vH4 with u4, it matches vH4 with u1,

4551

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

vH3 with u3, vH1 and vH2 with u2, and vH3 and vH2 with u5.

Consider vH4, since v25 connects with other supernodes with

superedges, it matches v24, v25 with u4 and u1, respectively.

Then it matches v6 in vH3 with u3, v1 in vH1 with u2, and

v7, v8, v9 with u5. As such, there are 3 embeddings for Q.

B. Shortest Distance Query

Diskstra’s algorithm [31] is one of the best known algo-

rithms for the shortest distance query. We adapt it to the

outsourced graph Gout and outline the adapted algorithm,

FRESHDIST, in Algorithm 3. The main differences between

Diskstra’s algorithm and FRESHDIST are two-fold. First,

FRESHDIST performs Edge Relaxation [31] on edges within

a supernode or edges between supernodes (see ModDijkstra,

Line 2). Second, FRESHDIST needs to handle the case where s
and t are in different blocks. FRESHDIST addresses this chal-

lenge by decomposing the distance into the distance between

internal vertices and the distance between boundary vertices

(e.g., v4 and v12, Figure 2). Formally, the shortest distance be-

tween s and t is d(s, t) = minvs,vt d(s, vs)+d(vs, vt)+d(vt, t)
where vs and vt are boundary vertices, and vs (resp. vt) is in

the same block as s (resp. t). The correctness is guaranteed

by Theorem 1.

Definition 4 (Boundary Vertex): Given a k-automorphic

graph Gk, if a vertex u in a block Bi has at least one neighbour

in another block Bj where Bi 	= Bj , u is boundary vertex.

Algorithm 3 FRESHDIST

Input: outsourced graph Gout, fA, fC and Dist query (s, t).
Output: the shortest distance d(s, t).
1: D(s, vs),D(vt, t) ← {0}, curmin ← ∞.
2: D(s, vs) ← ModDijkstra(s, Gout, fC , fA)
3: D(vt, t) ← ModDijkstra(t, Gout, fC , fA)
4: for each vertex pair (vs, vt) s.t. vs ∈ Bs and vt ∈ CBV do
5: if curmin > d(s, vs) + d(vs, vt) + d(vt, t) then
6: d(s, t) ← d(s, vs) + d(vs, vt) + d(vt, t)
7: curmin ← d(s, vs) + d(vs, vt) + d(vt, t)

8: return d(s, t)

FRESHDIST. If s and t belong to different blocks, they can

be mapped to the same block using the mapping function fA.

Let’s assume that k = 2 for the sake of simplicity. Suppose s is

in the first block and t is in the second block, we can map t to

the vertex t′ = fA(t) in the first block. To compute the shortest

distance d(s, vs) for each boundary vertex vs ∈ Bs (where

Bs represents all the boundary vertices in the first block), we

utilize the modified Dijkstra algorithm described in Line 2 of

Algorithm 3. Similarly, for each boundary vertex vt ∈ CBV
(in the case of k = 2, CBV represents the supernode in the

second block), we can compute the shortest distance d(vt, t) =
d(vt, t

′) (Line 3). By examining all possible vertex pairs vs
and vt, we derive the shortest distance (Lines 4 to 7).

ModDijkstra. Consider the computation of d(s, vs). Compared

to the traditional Dijkstra’s algorithm, the minor modification

is the relaxation of edge weight when moving a vertex vx from

unvisited set V \S to the visited set S. Specifically, if vx and vy
are in the same supernode (denoted as fC(vx) = fC(vy) =
vH), vx updates d(vy) using the distance information (i.e.,
vH .dis) stored in the synopses, where the shortest distance has

v8

v4

v5

v9

v10

v12

v13

v18

v21

v22

Bs Bt

�

�

�

�

�

�

�

�
�

�
�

�

�����

Fig. 7: FRESHDIST

been pre-computed. On the other hand, if fC(vx) 	= fC(vy),
this can be computed by decontracting the superedges between

fC(vx) and fC(vy) using the decontraction function fD.

Example 8: Consider the shortest distance query (s =
v8, t = v22) on Gout in Figure 5. Suppose that all edge

weights are 1. The boundary vertices Bs are {v9, v10, v4, v5}
and CBV are {v12, v13, v18, v21} (see Figure 7). We first map

t = v22 to v11. Then, the shortest distances from v22 to

each vertex in CBV are: d(v22, v21) = 1, d(v22, v18) = 2,

d(v22, v12) = 6, d(v22, v13) = 5. The shortest distances from

s = v8 to each vertex in Bs are: d(v8, v9) = 1, d(v8, v10) = 1,

d(v8, v4) = 4, d(v8, v5) = 3. In addition, by decontracting

vH3 and vH2, we derive the shortest distance from v10 to v21
as 1. As such, the shortest distance from s = v8 to t = v22 is

d(v8, v10) + d(v10, v21) + d(v22, v21) = 1 + 1 + 1 = 3.

Lemma 2: Let p(s, t) be the shortest path from s to t, u be
a vertex along the shortest path, p(s, u) and p(u, t) are the
shortest path for (s, u) and (u, t).

Theorem 1: For any vertex pair (s, t), if s and t belong to
Bi and Bj , respectively, and Bi 	= Bj , there must exist at
least one boundary vertex vs in block Bi and vt in block Bj

such that both vs and vt are in the shortest path from s to t.

C. Triangle Counting

We further propose the FRESHTRIC algorithm for triangle

counting. Compared to traditional triangle counting [26], [27],

FRESHTRIC verifies the existence of an edge that forms a tri-

angle in Gout. In particular, FRESHTRIC visits each supernode

vH in Gout, if vH is a CBV (i.e., vH .type = CBV), all

triangles in CBV are appended to RCV . If vH is a clique,

all vertices in vH are appended to RCV . Triangles formed by

vertices from different supernodes are appended to RTri. RCV

and RTri are returned to the client for postprocessing.

VI. POST-PROCESSING AND DISCUSSION

Once the client receives the query results RQ on Gout from

a cloud, there is a need to figure out the corresponding results

on G, RQ
G . This section discusses in detail how to filter and

retrieve the complete results on G for three query classes.

A. Post Processing

Post Processing for SubA (PROCESSRESULTSUBA):Algorithm

4 outlines post processing process for SubA. It takes the

original graph G, results RQ on Gout and mapping function

fA as inputs and computes the refined results RQ
G on G.

First, it maps each matched result (also known as embedding)

4552

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

M ∈ RQ to other unseen blocks in Gk (i.e., blocks other than

block 0) (Line 2 to Line 4) based on the mapping function.

In particular, for a vertex u (resp. v) in the first block, f i
A

maps it to f i
A(u) (resp. f i

A(v)) in block ((i+ 1) mod k).
If an edge (u, v) ∈ M , there is an edge

(
f i
A(u), f

i
A(v)

)
in

block ((i+ 1) mod k). Therefore, we can derive (k − 1)
embeddings for M , i.e., Mi = f i

A(M) where i ∈ [0, k − 1].
Then, it filters the k embeddings on Gk based on data

graph G by removing the embeddings with noise edges (i.e.,
CheckEdge, Line 5) or labels (i.e., CheckLabel, Line 5),

which results in the exact results RQ
G (Lines 5 to 7).

Algorithm 4 PROCESSRESULTSUBA

Input: Original graph G, results RQ on Gout and mapping function fA.
Output: refined results RQ

G on G.

1: RQ
G ← ∅

2: for each embedding M ∈ RQ do
3: for i = 0, 1, · · · , k − 1 do
4: Mi ← fi

A(M)
5: res ← CheckLabel(G, Mi) ∧ CheckEdge(G, Mi)
6: if res is true then
7: RQ

G ← RQ
G ∪ Mi

8: return RQ
G

Post Processing for Dist: Recall that each noise edge (u, v)
is assigned with the weight w(u, v) = mint∈N(u,v)(w(u, t)+
w(t, v))+ ε where N(u, v) is the common neighbors of u and

v, and ε is drawn from a Laplace distribution (see Section

IV-D). There is no need to post-process the results from the

cloud, since these noise edges will not exist in the shortest

paths and have no effect on the final shortest distance.

Post Processing for Tric: As will be seen in Section V, the

cloud side returns two kinds of results to the client side, i.e.,
RCV ⊆ RQ and RTri ⊆ RQ where RCV is a set of a vertex

set in a clique and RTri is a set of triangles in the CBV or

crossing at least two supernodes. Let Count1 be the number

of triangles crossing supernodes, and Count2 be the number

of triangles in supernodes, the total number of triangles is

Count1 +Count2. We calculate Count1 and Count2 below.

(1) Computing Count1: for each triangle in RTri, if it con-

tains noise edges, it is removed from RTri. Finally, Count1
is the number of remaining triangles in RTri.

(2) Computing Count2: suppose there are |RCV | vertex

sets in RCV , and each vertex set RCV (i) is a set of ver-

tices in the same clique that may contain noise edges. Let

Count2(i) = |RCV (i)| be the number of vertices in the clique

RCV (i), if it contains no noise edge, there are
(|RCV (i)|

3

)
triangles. Otherwise, to facilitate the calculation of Count2(i),
each edge in the clique is assigned an invisible weight of

|RCV (i)|−2. Note that the invisible weight is used to indicate

how many triangles the associated edge appears in. Then, for

each edge in the clique, if it is a noise edge, it will be removed,

and its neighbors’ invisible weight will be decreased by 1. In

addition, Count2(i) decreases by the invisible weight of the

deleted edge. Finally, Count2 is
∑

i∈[1,|RCV |] Count2(i).

Lemma 3: The time complexity of PROCESSRESULT-

SUBA is O(k|M||Q|) where M is the embedding set from
cloud side and |Q| denotes the average size for the query

graph Q. The time complexity of PROCESSRESULTTRIC

is O(|RTri| +
∑|RCV |

i=1 |E′
CV (i)||RCV (i)|) where |E′

CV (i)|
denotes the number of noise edges in clique i.

B. Analysis of Complexity, Accuracy, and Compression Ratio

Complexity. Recall that for a graph G, a k-automorphic graph

is Gk; vertices in the first block of Gk is VB0 ; one-hop neigh-

bors of vertices in VB0
is VN0

; Gk
small = (Vsmall, Esmall)

where Vsmall = VB0
∪ VN0

, Esmall ⊆ Vsmall × Vsmall;

Gout = fC(G
k
small) is an outsourced graph.

Lemma 4: The time complexities of FRESH, AUT,
SUC, and CAU for a subgraph query q with size V (q)
are O(

(T (vH)|V (Gout)|)|V (q)|), O(|V (Gk)||V (q)|),
O(|V (Gk

small)||V (q)|), O(
(T (vH)|V (Gk)|

C)|V (q)|), respectively,
where T (vH) is the time taken to match a query vertex over
a supernode vH ; |V (Gout)| is the number of supdernodes
in Gout; |V (Gk)| (resp. |V (Gk

small)|) is number of vertices
in Gk (resp. V (Gk

small)); C is the average size of a
supernode. In addition, O(

(T (vH)|V (Gout)|)|V (q)|)
≤ O(|V (Gk

small)||V (q)|) ≤O(|V (Gk)||V (q)|) and
O(

(T (vH)|V (Gout)|)|V (q)|) ≤ O(
(T (vH)|V (Gk)|

C)|V (q)|).
Lemma 5: The time complexities of FRESH, AUT, SUC,

and CAU for triangle counting are O(
(|V (Gk

small)|−Cstar−
2Cpath)

3
)
, O(|V (Gk)|3), O(|V (Gk

small)|3
)
, O(

(|V (Gk)| −
kCstar − 2kCpath)

3
)
, respectively, where Cstar (resp. Cpath)

is the number of stars (resp. paths) in Gout. O(
(|V (Gk

small)|−
Cstar − 2Cpath)

3
) ≤ O(|V (Gk

small)|3
) ≤ O(|V (Gk)|3)

and O(
(|V (Gk

small)| − Cstar − 2Cpath)
3
) ≤ O(

(|V (Gk)| −
kCstar − 2kCpath)

3
)
.

Lemma 6: The time complexities of FRESH, AUT,
SUC, and CAU for the shortest distance query are
O(

(T (vH)|V (Gout)| + |V (Gk
small)|) log(|V (Gk

small)|)
)
,

O(
(|E(Gk)| + |V (Gk)|) log(|V (Gk)|)), O(

(|E(Gk
small)| +

|V (Gk
small)|) log(|V (Gk

small)|)
)
, O(

(T (vH)|V (Gk)|
C +

|V (Gk)|) log(|V (Gk)|)), respectively, where T (vH) is the
times required to relax the distance of edges in a supernode
vH ; |V (Gout)| is the number of supdernodes in Gout; |V (Gk)|
(resp. |V (Gk

small)|) is the number of vertices in Gk (resp.
V (Gk

small)); C is the average size of a supernode. In addition,
O(

(T (vH)|V (Gout)| + |V (Gk
small)|) log(|V (Gk

small)|)
)

≤ O(
(|E(Gk

small)| + |V (Gk
small)|) log(|V (Gk

small)|)
)

≤ O(
(|E(Gk)| + |V (Gk)|) log(|V (Gk)|)) and

O(
(T (vH)|V (Gout)| + |V (Gk

small)|) log(|V (Gk
small)|)

)

≤ O(
(T (vH)|V (Gk)|

C + |V (Gk)|) log(|V (Gk)|)).
Accuracy. The correctness of the query is guaranteed. We

establish the correctness of triangle counting (or subgraph

query) by demonstrating that the FRESHTRIC (or FRESH-

SUBA) algorithm can deliver all potential results, while the

accompanying post-processing procedure effectively filters out

false positives.

Theorem 2: The FRESH algorithm guarantees the accuracy
of the triangle-counting query.

Theorem 3: The FRESH algorithm guarantees the accuracy
of the subgraph query.

4553

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

The correctness of the shortest distance query is also guar-

anteed. We demonstrate this by showing that the FRESHDIST

algorithm can exactly find the shortest distance.

Theorem 4: The FRESH algorithm guarantees the accuracy
of the shortest distance query.
Compression Ratio. Given the importance of Gk in defending

against structural attacks, the compression ratio is defined as

the size of Gk to the size of Gout.

Lemma 7: Let V be the vertex set of V (Gk), and
Cstar, Cclique, Cpath, Csin be the number of stars, cliques,
paths, and singletons in Gout, respectively, the compression
ratio is |V |/(Cstar +Cclique +Cpath +Csin + k− 1), which
is bounded by k|V |/(|V |+ (k − 1)k).

VII. OPTIMIZATIONS

Observe that the number of noise labels introduced in the

process of building Gk has an impact on the labeled query

SubA, to efficiently process such queries, we design a novel

optimization to further boost query efficiency. We begin with

the estimation for the search space of SubA.

A. Search space of subgraph query

Consider k-automorphic graph Gk with |L| types of labels.

Let FGk(i) (resp. FQ(i)) be the probability a vertex in Gk

(resp. Q) with label i, DGk the average degree in Gk. The

search space for SubA query can be estimated as follows [2].

|VGk |
k

[|L|∑
i=1

FGk(i)FQ(i)
][
DGk

|L|∑
i=1

FGk(i)FQ(i)
]D

Gk

(1)

where FGk(i) =
|V

Gk,i
|

|V
Gk | , FQ(i) =

|VQ,i|
|VQ| . Therefore, we shall

reduce the number of (noise) labels (i.e., |VGk,i|) and average

degree (DGk) to reduce the search space.

B. Optimization method

To this end, we proposed the optimized K-Match algorithm

in Algorithm 5. It takes data graph G and anonymization

parameter k as input and generates k-automorphic graph Gk.

First, it follows the existing K-Match algorithm to build AVT

(Line 2). In the AVT, vertices with similar degrees may be

put into the same row of AVT. However, vertices with similar

degrees may have different labels, resulting in the vertex in

the first block B0 of Gk assigned with labels of additional

vertices in the same row (i.e., vertices in B1 to Bk−1). Then,

it creates a BFS spanning tree to address this problem (Line 3).

In particular, for any two vertices, if their symmetric vertices

in block B0 lie in the same depth of the spanning tree, it

adjusts the AVT by swapping positions of these vertices in

AVT if the swapping can decrease the amount of labels by

at least 2 (ADJUSTAVT, Line 4). Finally, edge alignment is

performed to derive the final Gk (Line 5).

Theorem 5: Each vertex in AVT is swapped at most once
during ADJUSTAVT.

Remark. A keen reader may wonder why designing the

aforementioned optimization instead of adopting state-of-the-

art indexing methods (e.g., 2-hop-labeling and CT-index [33],

Algorithm 5 K-MatchOPT

Input: Original graph G, parameter K.
Output: Anonymized network Gk .

1: (B0, B1, · · · , Bk−1) ← GRAPHPARTITION(G, K)
2: AVT ← CREATEAVT(B0, B1, · · · , Bk−1)
3: A ← BUILDSPANNINGTREE(B0)
4: AVT ← ADJUSTAVT((B0, B1, · · · , Bk−1), A, G, AVT)

5: Gk ← EDGEALIGNMENT(AVT, G)
6: return Gk

TABLE II: List of datasets.

Dataset Number of vertices |VG| Number of edges |EG| Number of labels |lG|
DBLP 317K 865K 100

NotreDame 325K 1M 200
Amazon 334K 925K 100
BerkStan 685K 7.6M 1200
Google 875K 5.1M 1200

RoadNet 1M 3M 2000
YouTube 1.1M 2.9M 46

USA 1.2M 2.8M 2000
Livejournal 4M 35M 2000
uk-2002 18M 0.261 Billion 6000

[71]) to boost the query efficiency. The prior work typically

targets a specific class of queries, e.g., 2-hop labeling [33] is

for the shortest distance/path queries. However, in practice,

multiple applications frequently operate on the same graph

simultaneously. It is impractical to switch between different

applications. In addition, building indices for each query class

in use would be prohibitively expensive [18].

VIII. PERFORMANCE STUDY

FRESH is implemented in C++11. The client is a laptop

with M1 CPU and 16GB RAM running MacOS 11. The cloud

server provided by Alibaba Cloud is a Linux Server with 8

CPU cores and 128GB RAM.

A. Experimental setup

Datasets: (a) Web graphs: BerkStan, Google, NotreDame and

uk-2002; (b) Community networks: DBLP, Amazon, YouTube

and Livejournal; and (c) Road networks: RoadNet and USA.

The statistics are in Table II.

Competitors: We compare FRESH against baselines, i.e., AUT,

SUC, and CAU (see Section III-C). Note that they adopt the

same query processing methods as FRESH.

Performance metrics and Parameter settings: We measure

query processing time, pre-computing time (i.e., contraction

time and anonymization time), contraction percentage

η = (|V (Gout)| + |E(Gout)|)/(|V (G)| + |E(G)|) (i.e., the

percentage of the size of Gout to that of G), and space storage

cost. Unless otherwise stated, k = 2, cl = 4, cu = 200.

B. Experimental Results

As result filtering in the client side is straightforward and

lightweight, we mainly present the performance of FRESH on

cloud side on three types of queries: SubA, Dist and TriC.

Exp 1: FRESH vs. Baselines. To compare FRESH and base-

lines for SubA, we adopt a random walk on the original data

graph G to generate 200 query graphs and report the average

processing time in Figure 8. Observe that FRESH outperforms

baselines while AUT performs the worst among all baselines.

The main reason lies in that FRESH can greatly reduce the

4554

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

(a) DBLP (b) Amazon (c) Google

(d) BerkStan (e) Livejournal (f) uk-2002

Fig. 8: Baseline comparison, SubA

TABLE III: Storage Cost (MB)

Dataset G Gk Gk
small Gk

C Gout

Amazon 19 31 16 16 7.6
DBLP 18 28 15 15 6.7

RoadNet 41 52 29 26 13
BerkStan 118 197 86 45 21
Google 82 133 65 45 21

YouTube 61 100 54 60 27
Livejournal 479 996 515 537 285

uk-2002 4812 8499 3891 1433 783

(a) DBLP (b) Google (c) RoadNet

(d) YouTube (e) Livejournal (f) uk-2002

Fig. 9: Baseline comparison, Dist

(a) Google (b) YouTube (c) BerkStan

(d) NotreDame (e) Livejournal (f) uk-2002

Fig. 10: Baseline comparison, TriC

(a) SubA (b) Dist

(c) TriC (d) Storage cost

Fig. 11: Effect of k, query time and storage cost

graph size (see storage cost of Gout, Table III) and the compact

graph further boosts the query processing of SubA. In contrast,

AUT is performed on Gk, which incurs the largest space

storage cost (third column, Table III) and takes the longest

time. As shown in Figure 8(e) and (f), the performance

improvement on larger graphs is more considerable. This

justifies the significance of FRESH for SubA.

Next, we compare FRESH and baselines for Dist with 1000
queries and plot the results in Figure 9. In general, FRESH per-

forms the best compared to baselines. Although this advantage

may not be particularly evident in some datasets (e.g., DBLP,

Figure Figure 9(a)), this is because the comparison was made

when k = 2. When k = 2, the size difference between Gk

or G and Gout is not very significant in some datasets. As

will be seen later (see Exp 2), this advantage will gradually

become more pronounced when k increases.

We further compare FRESH and baselines for TriC and

report the results in Figure 10. We can find that FRESH

outperforms all the baselines on all tested datasets. Compared

to SUC, CAU, and FRESH, AUT takes the longest processing

time as it greatly enlarges the graph size to achieve symmetric

structures. In conclusion, FRESH outperforms the competitors

on all three queries (i.e., SubA, Dist, and TriC) in terms of

both query processing time and storage cost.

Exp 2: Effect of k. We vary the value of k from 2 to 10
and compare their performances in SubA, Dist, and TriC.

As reported in Figure 11(a), subgraph query processing time

of both AUT and SUC increases with the value of k. For

AUT, this is apparent since the graph size and search space

for SubA increase with k; for SUC, the main reason is that as

k increases, although the number of vertices/edges in block

0 may decrease, the corresponding CBV will increase in

terms of the number of vertices. Although the total number

of vertices and edges does not change significantly, we need

to consider the potential edges in CBV in subgraph matching

4555

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

because we need to map the vertices in the CBV to block 0
during the search. As k increases, the number of vertices/edges

in CBV increases, as well as the noise edges, which leads

to an increase in the search space and query processing

time. While the processing time of CAU and FRESH slightly

decreases with k. For CAU, as k increases, the number of

edges in Gk increases, but the proportion of cliques in Gk

also increases. But graph contraction can effectively reduce

the impact of edge increase, resulting in a slightly decreasing

trend overall. For FRESH, the number of vertices in block

0 decreases as k increases. Although the CBV increases in

terms of the number of vertices, the information in CBV

is stored in the synopses, which can accelerate the query

processing process.

As illustrated in Figure 11(b), as k increases, distance query

processing time of AUT and CAU increase while that of SUC

and FRESH decrease. The reasons are as follows: as k in-

creases, (1) for CAU, the graph becomes denser, more cliques

are formed, and more superedges need to be contracted for

Dist, resulting in an overall increase in processing time; (2)

for SUC, number of vertices in block 0 and its corresponding

Dist query cost decrease, although number of vertices in

CBV increases, this does not lead to the increase of query

cost since shortest distance in CBV are recorded; (3) both

the decreases of number of vertices in block 0 and graph

contraction lead to the decrease of processing time of FRESH

on Dist. As shown in Figure 11(c), for TriC, the query time

of AUT, SUC and CAU increases with k, as graph becomes

denser as the k increases. We also report the storage cost

in Figure 11(d). As k increases, the size of Gk increases, so

the storage cost of CAU and AUT also increases. The size

of Gk
small does not change significantly overall, although the

number of vertices in CBV increases while the number of

vertices in Block 0 decreases. Therefore, the storage cost of

SUC and FRESH does not change significantly. Compared to

SUC, FRESH requires less storage cost.

Exp 3: Processing Time of Graph Contraction. Next, we

present the running time of k-automorphic graph construction

in Figure 12(a) and graph contraction in Figure 12(b). It is

worth noting that although larger graph sizes result in longer

running times for k-automorphic graph construction, even the

largest graph, uk-2002, can be constructed within 35 minutes.

Importantly, this step is performed only once before sending

the graph to the cloud side. As depicted in Figure 12(b),

FRESH requires less contraction time compared to CAU,

which contracts the entire Gk. This demonstrates the efficiency

of FRESH in reducing the time required for graph contraction.

Exp 4: Communication Cost. We also included an analysis

of the communication cost involved in sending outsourced

graphs to the cloud. Table IV presents the communication cost,

which increases as the size of the graph grows. However, due

to the substantial reduction in the size of Gk achieved by

outsourcing Gout in FRESH, the communication cost remains

within acceptable limits. Even for the largest dataset, it takes

less than 10 minutes to transmit Gout to the cloud.

(a) Anonymization time (b) Contraction time

Fig. 12: Processing Time of Graph Contraction

TABLE IV: Communication Cost (s)

Dataset G Gk Gk
small Gk

C Gout

Amazon 18 19 15 15 6
DBLP 17 26 13 16 7

RoadNet 31 41 21 20 10
BerkStan 84 136 58 28 15
Google 61 98 44 26 15

YouTube 42 73 36 42 18
Livejournal 319 664 325 368 192

uk-2002 3108 5766 2594 925 542

IX. CONCLUSION

In this paper, we present FRESH, a versatile framework

that efficiently handles multiple classes of graph queries

in a single outsourced graph. We introduce a novel graph

contraction scheme to reduce a large graph into a compact

one while maintaining graph privacy, thereby reducing the

size of the outsourced graph. To demonstrate the feasibility

of FRESH, we adapt classical graph query algorithms, such

as subgraph query, triangle counting, and shortest distance

query, to the same compact graph as a proof of concept.

Additionally, we implement optimizations to improve query

processing efficiency. Our comprehensive experimental results

demonstrate that FRESH outperforms traditional techniques.

We will explore other graph queries such as community search

[72], graphlet counting [73], reachability queries [74], and

graph pattern mining [28], [29] on outsourced graphs.

X. ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China (Grant No: 92270123 and 62372122), the

Research Grants Council, Hong Kong SAR, China (Grant No:

15203120, 15226221, 15225921, 15209922, 15208923 and

15210023), and General Research Grants (Grant No: FRG-24-

027-FIE) of the MUST Faculty Research Grants (FRG). The

research work described in this paper was partially conducted

in the JC STEM Lab of Data Science Foundations funded by

The Hong Kong Jockey Club Charities Trust, HKUST-China

Unicom Joint Lab on Smart Society, and HKUST-HKPC Joint

Lab on Industrial AI and Robotics Research.

REFERENCES

[1] Technical Report. Available at: https://github.com/TechReport2022/
FRESH/blob/main/FRESH-Report.pdf.

[2] Chang Z, Zou L, Li F. Privacy preserving subgraph matching on large
graphs in cloud. SIGMOD, 2016.

4556

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

[3] Hu H, Xu J, Chen Q, et al. Authenticating location-based services
without compromising location privacy. SIGMOD, 2012.

[4] Huang K, Hu H, Zhou S, et al. Privacy and efficiency guaranteed social
subgraph matching. The VLDB Journal, 2022.

[5] Zou L, Chen L, Özsu M T. K-automorphism: A general framework for
privacy preserving network publication. PVLDB, 2009.

[6] Cheng J, Fu A W, Liu J. K-isomorphism: privacy preserving network
publication against structural attacks. SIGMOD, 2010.

[7] Bron, C and Kerbosch, J. Algorithm 457: finding all cliques of an
undirected graph. Communications of the ACM, 1973.

[8] Eppstein D, Löffler M and Strash D. Listing all maximal cliques in large
sparse real-world graphs. JEA, 2013.

[9] Wu W, Xiao Y, Wang W, et al. K-symmetry model for identity
anonymization in social networks. EDBT, 2010.

[10] Sweeney L. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002.

[11] Machanavajjhala A, Kifer D, Gehrke J, et al. l-diversity: Privacy beyond
k-anonymity. ICDE, 2006.

[12] Li N, Li T, Venkatasubramanian S. t-closeness: Privacy beyond k-
anonymity and l-diversity. ICDE, 2007.

[13] Zhou B and Pei J. Preserving privacy in social networks against
neighborhood attacks. ICDE, 2008.

[14] Hay M, Miklau G, et al. Resisting structural re-identification in
anonymized social networks. PVLDB, 2008.

[15] Liu K, Terzi E. Towards identity anonymization on graphs. SIGMOD,
2008.

[16] G Karypis, V Kumar. Analysis of multilevel graph partitioning. SC, 1995

[17] Dominguez-Sal D, et al. A discussion on the design of graph database
benchmarks. Technology Conference on Performance Evaluation and
Benchmarking, 2010.

[18] Fan W, Li Y, Liu M, et al. Making graphs compact by lossless
contraction. SIGMOD, 2021.

[19] W Han, J Lee, J Lee, et al. Turboiso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. SIGMOD, 2013.

[20] F Bi, L Chang, X Lin, L Qin, W Zhang, et al. Efficient Subgraph
Matching by Postponing Cartesian Products. SIGMOD, 2016.

[21] J Lee, W Han, R Kasperovics, J Lee, et al. An in-depth comparison of
subgraph isomorphism algorithms in graph databases. VLDB, 2012.

[22] S Sun, Q Luo, et al. In-Memory Subgraph Matching: An In-depth Study.
SIGMOD, 2020.

[23] Li Z, Yan J, W Lu, L Zou, et al. Deep Analysis on Subgraph Isomor-
phism. arXiv preprint arXiv:2012.06802, 2020.

[24] M Han, H Kim, G Gi, K Park, W Han, et al. Efficient Subgraph
Matching: Harmonizing Dynamic Programming, Adaptive Matching
Order, and Failing Set Together. SIGMOD, 2019.

[25] V Bonnici, R Giugno, et al. A subgraph isomorphism algorithm and its
application to biochemical data. BMC bioinformatics, 2013.

[26] X Hu, Y Tao, et al. Massive graph triangulation. SIGMOD, 2013.

[27] C Jonathan, et al. Trusses: Cohesive subgraphs for social network
analysis. National security agency technical report, 2008.

[28] Huang K, Hu H, Ye Q, et al. TED: Towards Discovering Top-k Edge-
Diversified Patterns in a Graph Database. SIGMOD, 2023.

[29] K. Huang, et al. TED+: Towards Discovering Top-k Edge-Diversified
Patterns in a Graph Database. TKDE. doi: 10.1109/TKDE.2023.3312566

[30] Takuya Akiba, et al. Fast exact shortest-path distance queries on large
networks by pruned landmark labeling. SIGMOD, 2013.

[31] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik 1, 1959.

[32] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path:
A Search Meets Graph Theory. SODA, 2005.

[33] D Ouyang, L Qin, at al. When hierarchy meets 2-hop-labeling: Efficient
shortest distance queries on road networks. SIGMOD, 2018.

[34] M. Jiang, A. W. Fu, et al. Hop doubling label indexing for point-to-point
distance querying on scale-free networks. PVLDB, 2014.

[35] Das, Sudipto and Eğecioğlu, Ömer and El Abbadi, Amr. Anonymizing
weighted social network graphs. ICDE, 2010.

[36] J. Gao, J. X. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang. Neighborhood-
privacy protected shortest distance computing in cloud. SIGMOD, 2011.

[37] N. Cao, Z. Yang, et al. Privacy-preserving query over encrypted graph-
structured data in cloud computing. ICDCS, 2011.

[38] L Xu, B Choi, Y Peng, J Xu, S S Bhowmick. A Framework for Privacy
Preserving Localized Graph Pattern Query Processing. SIGMOD, 2023.

[39] Z Fan, Y Peng, B Choi. Towards efficient authenticated subgraph query
service in outsourced graph databases. IEEE Transactions on Services
Computing, 2014.

[40] K. Huang, H Liang, et al.,” VisualNeo: Bridging the Gap between Visual
Query Interfaces and Graph Query Engines. PVLDB, 2023.

[41] Huang K, Ye Q, , et al. VINCENT: Towards Efficient Exploratory
Subgraph Search in Graph Databases. PVLDB, 2022.

[42] Z Chang, L Zou, F Li, et al. Privacy preserving subgraph matching on
large graphs in cloud. SIGMOD, 2016.

[43] L Zou, L Chen, M T Özsu, et al. K-automorphism: a general framework
for privacy preserving network publication. VLDB, 2009.

[44] M. Yuan, L. Chen, S. Y. Philip, and T. Yu. Protecting sensitive labels
in social network data anonymization. TKDE, 2013.

[45] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the
degree distribution of private networks. ICDM, 2009.

[46] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev. Private
analysis of graph structure. PVLDB, 2011.

[47] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao.
Private release of graph statistics using ladder functions. SIGMOD, 2015.

[48] K. Huang, et al., MIDAS: Towards Effective Maintenance of Canned
Patterns in Visual Graph Query Interfaces. SIGMOD, 2021.

[49] S S Bhowmick, et al., AURORA: Data-driven Construction of Visual
Graph Query Interfaces for Graph Databases. SIGMOD, 2020.

[50] Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao. LF-GDPR:Graph
Metric Estimation with Local Differential Privacy. TKDE, 2020.

[51] S. Chen and S. Zhou. Recursive mechanism: Towards node differential
privacy and unrestricted joins. SIGMOD, 2013.

[52] S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith.
Analyzing graphs with node differential privacy. TCC, 2013.

[53] W. Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution with
node differential privacy. SIGMOD, 2016.

[54] X. Ding, S. Sheng, S. Zhou, et al. Differentially Private Triangle
Counting in Large Graphs. TKDE, 2021.

[55] Sara Cohen. Data management for social networking. In SIGMOD, 2016.
[56] K. Huang, et al., CATAPULT: Data-driven Selection of Canned Patterns

for Efficient Visual Graph Query Formulation. SIGMOD, 2019.
[57] K. Huang, et al., PICASSO: Exploratory Search of Connected Subgraph

Substructures in Graph Databases. PVLDB, 2017.
[58] B Zheng, Y Ma, et al. Reinforcement Learning based Tree Decomposi-

tion for Distance Querying in Road Networks. ICDE, 2023.
[59] B Zheng, J Wan, et al, Christian S.Jensen. Workload-Aware Shortest

Path Distance Querying in Road Networks. ICDE, 2022.
[60] Q Ye, H Hu, et al. Stateful Switch: Optimized Time Series Release with

Local Differential Privacy. INFOCOM, 2023.
[61] Q Qian, et al. Collaborative Sampling for Partial Multi-dimensional

Value Collection under Local Differential Privacy. TIFS, 2023.
[62] X Sun, Q Ye, et al. Synthesizing Realistic Trajectory Data with Differ-

ential Privacy. TITS, 2023.
[63] Q Ye, H Hu, et al. PrivKVM*: Revisiting Key-Value Statistics Estima-

tion with Local Differential Privacy. TDSC, 2021.
[64] Antonio Maccioni and Daniel J Abadi. Scalable pattern matching over

compressed graphs via dedensification. In SIGKDD, 2016.
[65] Kristen LeFevre and Evimaria Terzi. GraSS: Graph structure summa-

rization. In SDM, 2010.
[66] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph

Summarization Methods and Applications: A Survey. ACM Comput.
Surv, 2018.

[67] Bibek Bhattarai, et al. CECI: Compact Embedding Cluster Index for
Scalable Subgraph Matching. In SIGMOD, 2019.

[68] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient
subgraph matching by postponing cartesian products. In SIGMOD, 2016.

[69] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability
and Distance Queries via 2-Hop Labels. SICOMP, 2003.

[70] Yongjiang Liang and Peixiang Zhao. Similarity search in graph
databases: A multi-layered indexing approach. In ICDE, 2017.

[71] Li W, Qiao M, Qin L, et al. Scaling up distance labeling on graphs with
core-periphery properties. In SIGMOD, 2020.

[72] Fang Y, Huang X, Qin L, et al. A survey of community search over big
graphs. The VLDB Journal, 2020, 29: 353-392.

[73] Ahmed N K, Neville J, Rossi R A, et al. Efficient graphlet counting for
large networks. In ICDM, 2015.

[74] Cheng J, Shang Z, Cheng H, et al. Efficient processing of k-hop
reachability queries. The VLDB Journal, 2020, 23(2): 227-252.

4557

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 31,2024 at 03:01:57 UTC from IEEE Xplore. Restrictions apply.

