Entity Matching by Similarity Join
 
Loading...
Searching...
No Matches
test_sample.py File Reference

Namespaces

namespace  test_sample
 

Variables

 test_sample.file = Path(__file__).resolve()
 
 test_sample.parent
 
 test_sample.root
 
str test_sample.dir_path = "../datasets/tables/megallen/amazon-google-structured"
 
str test_sample.path_tableA = "/".join([dir_path, "table_a.csv"])
 
str test_sample.path_tableB = "/".join([dir_path, "table_b.csv"])
 
str test_sample.path_gold = "/".join([dir_path, "gold.csv"])
 
 test_sample.gold_graph = nx.Graph()
 
 test_sample.tableA = read_csv_table(path_tableA)
 
 test_sample.tableB = read_csv_table(path_tableB)
 
 test_sample.gold = read_csv_golds(path_gold, gold_graph)
 
 test_sample.sample_strategy
 
 test_sample.blocking_attr
 
 test_sample.cluster_tau
 
 test_sample.sample_tau
 
 test_sample.step2_tau
 
 test_sample.num_data
 
 test_sample.ob = OverlapBlocker()
 
 test_sample.C
 
int test_sample.cur_golds = 0
 
 test_sample.row_index = list(C.index)
 
str test_sample.id1 = str(C.loc[index, 'ltable_id']) + 'A'
 
str test_sample.id2 = str(C.loc[index, 'rtable_id']) + 'B'
 
int test_sample.recall = cur_golds / len(gold) * 1.0
 
int test_sample.density = cur_golds / len(C) * 1.0