Entity Matching by Similarity Join
 
Loading...
Searching...
No Matches
vis_rf_path Namespace Reference

Variables

 file = Path(__file__).resolve()
 
 parent
 
 root
 
str dir_path = "../datasets/tables/megallen/amazon-google-structured"
 
str path_tableA = "/".join([dir_path, "table_a.csv"])
 
str path_tableB = "/".join([dir_path, "table_b.csv"])
 
str path_gold = "/".join([dir_path, "gold.csv"])
 
str path_rule = "simjoin_entitymatching/blocker/rules/rules_amazon_google_structured_1.txt"
 
str path_range = "simjoin_entitymatching/matcher/model/ranges/ranges_amazon_google_structured_1.txt"
 
str path_tree = "simjoin_entitymatching/matcher/model/trees/trees_amazon_google_structured_1.txt"
 
str path_rf = "simjoin_entitymatching/matcher/model/rf_amazon_google_structured_1.joblib"
 
 gold_graph = nx.Graph()
 
 tableA = read_csv_table(path_tableA)
 
 tableB = read_csv_table(path_tableB)
 
 gold = read_csv_golds(path_gold, gold_graph)
 
dict map_A = {tableA.loc[ridx, "id"] : ridx for ridx in list(tableA.index)}
 
dict map_B = {tableB.loc[ridx, "id"] : ridx for ridx in list(tableB.index)}
 
 attr_types_ltable = au.get_attr_types(tableA)
 
 attr_types_rtable = au.get_attr_types(tableB)
 
 rf = randf.RandomForest()
 
 graph
 
 at_ltable
 
 at_rtable
 
 wrtie_fea_names
 
 blk_res_cand
 
 H
 
 false_neg = pd.read_csv("test/debug/false_neg.csv")
 
 lid = int(row["ltable_id"])
 
 rid = int(row["rtable_id"])
 
 exclude_attrs
 

Variable Documentation

◆ at_ltable

vis_rf_path.at_ltable

◆ at_rtable

vis_rf_path.at_rtable

◆ attr_types_ltable

vis_rf_path.attr_types_ltable = au.get_attr_types(tableA)

◆ attr_types_rtable

vis_rf_path.attr_types_rtable = au.get_attr_types(tableB)

◆ blk_res_cand

vis_rf_path.blk_res_cand
Initial value:
1= em.read_csv_metadata("test/debug/false_neg.csv", key="_id",
2 ltable=tableA, rtable=tableB,
3 fk_ltable="ltable_id",
4 fk_rtable="rtable_id")

◆ dir_path

str vis_rf_path.dir_path = "../datasets/tables/megallen/amazon-google-structured"

◆ exclude_attrs

vis_rf_path.exclude_attrs

◆ false_neg

vis_rf_path.false_neg = pd.read_csv("test/debug/false_neg.csv")

◆ file

vis_rf_path.file = Path(__file__).resolve()

◆ gold

vis_rf_path.gold = read_csv_golds(path_gold, gold_graph)

◆ gold_graph

vis_rf_path.gold_graph = nx.Graph()

◆ graph

vis_rf_path.graph

◆ H

vis_rf_path.H
Initial value:
1= em.extract_feature_vecs(blk_res_cand,
2 feature_table=rf.features,
3 show_progress=False)

◆ lid

vis_rf_path.lid = int(row["ltable_id"])

◆ map_A

dict vis_rf_path.map_A = {tableA.loc[ridx, "id"] : ridx for ridx in list(tableA.index)}

◆ map_B

dict vis_rf_path.map_B = {tableB.loc[ridx, "id"] : ridx for ridx in list(tableB.index)}

◆ parent

vis_rf_path.parent

◆ path_gold

str vis_rf_path.path_gold = "/".join([dir_path, "gold.csv"])

◆ path_range

str vis_rf_path.path_range = "simjoin_entitymatching/matcher/model/ranges/ranges_amazon_google_structured_1.txt"

◆ path_rf

str vis_rf_path.path_rf = "simjoin_entitymatching/matcher/model/rf_amazon_google_structured_1.joblib"

◆ path_rule

str vis_rf_path.path_rule = "simjoin_entitymatching/blocker/rules/rules_amazon_google_structured_1.txt"

◆ path_tableA

str vis_rf_path.path_tableA = "/".join([dir_path, "table_a.csv"])

◆ path_tableB

str vis_rf_path.path_tableB = "/".join([dir_path, "table_b.csv"])

◆ path_tree

str vis_rf_path.path_tree = "simjoin_entitymatching/matcher/model/trees/trees_amazon_google_structured_1.txt"

◆ rf

vis_rf_path.rf = randf.RandomForest()

◆ rid

vis_rf_path.rid = int(row["rtable_id"])

◆ root

vis_rf_path.root

◆ tableA

vis_rf_path.tableA = read_csv_table(path_tableA)

◆ tableB

vis_rf_path.tableB = read_csv_table(path_tableB)

◆ wrtie_fea_names

vis_rf_path.wrtie_fea_names