Entity Matching by Similarity Join
 
Loading...
Searching...
No Matches
test_match Namespace Reference

Variables

 file = Path(__file__).resolve()
 
 parent
 
 root
 
str dir_path = "../datasets/tables/megallen/amazon-google-structured"
 
str path_tableA = "/".join([dir_path, "table_a.csv"])
 
str path_tableB = "/".join([dir_path, "table_b.csv"])
 
str path_gold = "/".join([dir_path, "gold.csv"])
 
str path_rule = "test/tmp/rules_amazon_google_structured1.txt"
 
str path_range = "test/tmp/ranges_amazon_google_structured.txt"
 
str path_tree = "test/tmp/trees_amazon_google_structured.txt"
 
str path_rf = "test/tmp/rf_amazon_google_structured.joblib"
 
 gold_graph = nx.Graph()
 
 tableA = read_csv_table(path_tableA)
 
 tableB = read_csv_table(path_tableB)
 
 gold = read_csv_golds(path_gold, gold_graph)
 
list numeric_attr = ["price", "year"]
 
 schemas = list(tableA)[1:]
 
 attr_types_ltable = au.get_attr_types(tableA)
 
 attr_types_rtable = au.get_attr_types(tableB)
 
 random_forest
 
 trigraph
 
 blocking_attr
 
 model_path
 
 tree_path
 
 range_path
 
 num_tree
 
 sample_size
 
 ground_truth_label
 
 True
 
 training_strategy
 
 inmemory
 
 num_data
 
 at_ltable
 
 at_rtable
 
 is_interchangeable
 
 flag_consistent
 

Variable Documentation

◆ at_ltable

test_match.at_ltable

◆ at_rtable

test_match.at_rtable

◆ attr_types_ltable

test_match.attr_types_ltable = au.get_attr_types(tableA)

◆ attr_types_rtable

test_match.attr_types_rtable = au.get_attr_types(tableB)

◆ blocking_attr

test_match.blocking_attr

◆ dir_path

str test_match.dir_path = "../datasets/tables/megallen/amazon-google-structured"

◆ file

test_match.file = Path(__file__).resolve()

◆ flag_consistent

test_match.flag_consistent

◆ gold

test_match.gold = read_csv_golds(path_gold, gold_graph)

◆ gold_graph

test_match.gold_graph = nx.Graph()

◆ ground_truth_label

test_match.ground_truth_label

◆ inmemory

test_match.inmemory

◆ is_interchangeable

test_match.is_interchangeable

◆ model_path

test_match.model_path

◆ num_data

test_match.num_data

◆ num_tree

test_match.num_tree

◆ numeric_attr

test_match.numeric_attr = ["price", "year"]

◆ parent

test_match.parent

◆ path_gold

str test_match.path_gold = "/".join([dir_path, "gold.csv"])

◆ path_range

str test_match.path_range = "test/tmp/ranges_amazon_google_structured.txt"

◆ path_rf

test_match.path_rf = "test/tmp/rf_amazon_google_structured.joblib"

◆ path_rule

str test_match.path_rule = "test/tmp/rules_amazon_google_structured1.txt"

◆ path_tableA

str test_match.path_tableA = "/".join([dir_path, "table_a.csv"])

◆ path_tableB

str test_match.path_tableB = "/".join([dir_path, "table_b.csv"])

◆ path_tree

test_match.path_tree = "test/tmp/trees_amazon_google_structured.txt"

◆ random_forest

test_match.random_forest

◆ range_path

test_match.range_path

◆ root

test_match.root

◆ sample_size

test_match.sample_size

◆ schemas

list test_match.schemas = list(tableA)[1:]

◆ tableA

test_match.tableA = read_csv_table(path_tableA)

◆ tableB

test_match.tableB = read_csv_table(path_tableB)

◆ training_strategy

test_match.training_strategy

◆ tree_path

test_match.tree_path

◆ trigraph

test_match.trigraph

◆ True

test_match.True